Abstract

There is great demand for nanoparticles (NPs) dispersed in liquid phases for practical applications of functional NP materials. However, it is difficult to produce NP dispersions with specific particle sizes, concentrations, viscosities, and purities on an industrial scale (large mass production rate and low energy consumption). In this review, we highlight recent developments in NP dispersion using low-energy bead mill. Such processes enable the use of small beads (7–50 μm). Smaller beads reduce the collision and shear energies of NPs during agitation. This minimizes NP breakage/damage, and retains the shape and crystallinity of the NPs, which determine the inherent NP functions. This review starts with a brief explanation of the theory and current status of NP dispersion and describes the mechanism and experimental results for low-energy bead mill processes, i.e., using uniaxial, dual-axial, and all-separator bead mills, and selection of dispersing agent. Applications of NP dispersions, including nanocomposite materials, and methods for dealing with NP dispersion coloration are also discussed, along with future research directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.