Abstract

This paper presents the development and tests in the thermal infrared of Integrated Optics (IO) technology in preparation of ESA's space mission <i>Darwin</i>. This mission aims to detect and characterize earth-like planets orbiting solar-type stars, using nulling interferometry in the spectral range 6 - 20 &#956;m. Since typically 1:1e6 rejection of starlight is required, wavefront modal filtering is mandatory. Thus, mid-infrared single-mode IO is being developed in the framework of the ESA-funded "Integrated Optics for Darwin" project. Beyond its wavefront filtering capabilities, an IO component may support various optical functions, and is thus likely to ease instrumental design. This paper addresses the manufacturing process and the characterization tests results of newly developed IO devices. Investigated solutions are dielectric waveguides based on Chalcogenide glasses and Hollow Metallic Waveguides. In a first phase, the pre-selected technological solutions were validated and modal behavior of the manufactured devices was demonstrated, both through polarization and spectral analysis. Preliminary nulling ratios up to 5000 have been obtained with an IO modal filter in the 6 - 20 &#956;m range. In a second phase of the project, the development of more complex IO functions was attempted. The methods used to validate the waveguide behavior and interferometric capabilities are also discussed. After achieving 1:1e5 polychromatic extinctions with similar solutions in the near IR, the presented results further underline the credibility of a mid-infrared IO concept for Darwin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.