Abstract

AbstractThe escalating demand for sophisticated carbon products, including carbon black, carbon nanotubes (CNTs), and graphene, has yet to be adequately addressed by conventional techniques with respect to large‐scale, efficient, and controllable carbon material synthesis. Molten pyrolysis emerges as a propitious strategy for generating such high‐value carbon materials. Abundant carbon sources encompassing methane (CH4), carbon dioxide (CO2), biomass, and plastics can undergo thermal decomposition into carbon constituents within molten metal or salt media. This methodology not only obviates dependence on traditional fossil fuels but additionally enables modulation of carbon material morphologies by varying the molten media, thereby presenting substantial potential for effective and controlled carbon material fabrication. In this review, we examine the capacity of molten pyrolysis in producing high‐value carbon materials derived from CH4, CO2, biomass, and plastics. Concurrently, we present a detailed overview of the potential applications of this novel methodology, particularly emphasizing its relevance in the fields of supercapacitors, flexible materials, and electrochemical cells. Furthermore, we contemplate future trajectories for molten pyrolysis, accentuating that amalgamation with auxiliary processes or technologies—like renewable energy systems and carbon capture and storage—represents a remarkably promising route for continued investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call