Abstract

Moving towards carbon-free energy and global commercialization of electric vehicles stimulated extensive development in the field of lithium-ion batteries (LIBs), and to date, many scientific and technological advances have been achieved. The number of research works devoted to developing high-capacity and stable materials for lithium- ion and lithium metal batteries (LMBs) is constantly rising. This review covers the main progress in the development of LIBs and LMBs based on research works published in 2021. One of the main goals in the recent publications is to solve the problem of instability of layered nickel-rich lithium– nickel–cobalt–manganese oxides (Ni-rich NMC) cathodes, as well as silicon anodes. Improving the stability of NMC cathodes can be achieved by doping them with cations as well as by coating the oxides’ surfaces with protective layers (organic polymers and inorganic materials). The most effective strategies for dampening volumetric changes in silicon anodes include using porous silicon structures, obtaining composites with carbon, coating silicon-containing particles with inorganic or polymeric materials, and replacing standard binder materials. Much work has been devoted to suppressing dendrite formation in LMBs by forming stable coating layers on the surface of lithium metal, preparing composite anodes and alloys, and changing the composition of electrolytes. At the same time, in the field of electrolyte development, many research works have been devoted to the search for new hybrid polymer electrolytes containing lithium-conducting inorganic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call