Abstract

We present an overview of results from a series of L–H transition experiments undertaken at JET since the installation of the ITER-like-wall (JET-ILW), with beryllium wall tiles and a tungsten divertor. Tritium, helium and deuterium plasmas have been investigated. Initial results in tritium show ohmic L–H transitions at low density and the power threshold for the L–H transition (P LH) is lower in tritium plasmas than in deuterium ones at low densities, while we still lack contrasted data to provide a scaling at high densities. In helium plasmas there is a notable shift of the density at which the power threshold is minimum () to higher values relative to deuterium and hydrogen references. Above (He) the L–H power threshold at high densities is similar for D and He plasmas. Transport modelling in slab geometry shows that in helium neoclassical transport competes with interchange-driven transport, unlike in hydrogen isotopes. Measurements of the radial electric field in deuterium plasmas show that E r shear is not a good indicator of proximity to the L–H transition. Transport analysis of ion heat flux in deuterium plasmas show a non-linearity as density is decreased below . Lastly, a regression of the JET-ILW deuterium data is compared to the 2008 ITPA scaling law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.