Abstract

Hybrid tandem solar cells offer the benefits of low cost and full solar spectrum utilization. Among the hybrid tandem structures explored to date, the most popular ones have four (simple stacking design) or two (terminal/tunneling layer addition design) terminal electrodes. Although the latter design is more cost-effective than the former, its widespread application is hindered by the difficulty of preparing an interface between two solar cell materials. The oldest approach to the in-series bonding of two or more bandgap solar cells relies on the introduction of a tunneling layer in multijunction III-V solar cells, but it has some limitations, e.g., the related materials/technologies are applicable only to III-V and certain other solar cells. Thus, alternative methods of realizing junction contacts based on the use of novel materials are highly sought after. Here, the strategies used to realize high-performance tandem cells are described, focusing on interface control in terms of bonding two or more solar cells for tandem approaches. The presented information is expected to aid the establishment of ideal methods of connecting two or more solar cells to obtain the highest performance for different solar cell choices with minimized energy loss through the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.