Abstract

AbstractIn the last few years the GaN‐based white light‐emitting diode (LED) has been remarkable as a commercially available solid‐state light source. To increase the luminescence power, we studied GaN LED epitaxial materials. First, a special maskless V‐grooved c‐plane sapphire was fabricated, a GaN lateral epitaxial overgrowth method on this substrate was developed, and consequently GaN films are obtained with low dislocation densities and an increased light‐emitting efficiency (because of the enhanced reflection from the V‐grooved plane). Furthermore, anomalous tunneling‐assisted carrier transfer in an asymmetrically coupled InGaN/GaN quantum well structure was studied. A new quantum well structure using this effect is designed to enhance the luminescent efficiency of the LED to ∼72%. Finally, a single‐chip phosphor‐free white LED is fabricated, a stable white light is emitted for currents from 20 to 60 mA, which makes the LED chip suitable for lighting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call