Abstract

AbstractThe magnetic refrigeration technique based on the magnetocaloric effect (MCE) has attracted increasing interest because of its high efficiency and environment friendliness. In this article, our recent progress in exploring effective MCE materials is reviewed with emphasis on the MCE in the LaFe13−xSixbased alloys discovered by us. These alloys show large entropy changes over a wide temperature range near room temperature. The effects of magnetic rare‐earth doping, interstitial atoms and high pressure on the MCE have been systematically studied. Special issues, such as appropriate approaches to determining the MCE associated with the first‐order magnetic transition, the depression of magnetic and thermal hysteresis, and the key factors determining the magnetic exchange in alloys of this kind, are discussed. The applicability of giant MCE materials to magnetic refrigeration near ambient temperature is evaluated. A brief review of other materials with significant MCE is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call