Abstract
Until the mid 1980’s, there had been only few in situ methods available for structural determination of an electrode surface in solution at atomic and monolayer levels. Nowadays, many powerful in situ techniques, such as electrochemical scanning tunneling microscopy (EC-STM), infrared reflection absorption spectroscopy (IRAS), surface-enhanced Raman scattering (SERS), and surface-enhanced infrared reflection absorption spectroscopy (SEIRAS), second harmonic generation (SHG), sum frequency generation (SFG), and surface X-ray scattering (SXS) have been widely employed to characterize the electrode surfaces under potential control with atomic and/or molecular resolution. The object of this review is to highlight some of the progress on in situ methods at solid-liquid interface with atomic and molecular levels. Several selected topics are focused on, specifically adsorbed anions on metal surface, electrocatalysis of the carbon oxide oxidation and xygen reduction, and direct observation of single crystal electrode surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.