Abstract

The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The Drosophila's class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.