Abstract

AbstractChalcogens are oxygen family elements with oxygen having distinct properties than the other group members like sulfur, selenium, and tellurium. Tungsten and molybdenum chalcogenides that include mainly metal oxides (MO3; M = Mo, and W) and metal dichalcogenides (MX2; X = S, Se, and Te) are the most exciting class of inorganic materials. They have been widely investigated in various applications including lithium and sodium ion storage, supercapacitors, gas sensors, biosensors etc. due to their fascinating surface properties and ease of fabrication. Different class of nanostructures including 0D (nanoparticles, quantum dots), 1D (nanowires, nanotubes, nanoribbons, nanobelts etc.), and 2D (nanosheets, nanoflakes, nanoplates etc.) structures of these materials have been synthesized, characterized, and utilized for these applications. With recent boost in layered material research, they are also being reconsidered for future device and systems applications. In this review article, the recent developments on the chemiresistive gas sensing applications of these nanomaterials are discussed. The authors also outline the efforts which have been made over the years to improve the sensing behavior of these materials. Finally, the authors present future opportunities in realizing high‐performance gas sensors using these materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call