Abstract

The emissions of carbon dioxide (CO2) and other greenhouse gases from rapidly growing industries and households are of great concern. These emissions cause problems like global warming and climate change. Although various technologies can be used to decline the alarming levels of greenhouse gases, CO2 capturing is deemed more cost-effective. The metal-organic frameworks (MOFs) are proving to be effective adsorbent material for CO2 capture due to their microporous structure. MOFs exhibit varying extents of chemical and thermal stabilities; hence, distinct MOFs can be selected for applications based on the working environment. In this article, thermal, chemical, mechanical, and hydrothermal stabilities of MOFs and adsorption mechanisms of CO2 capture in MOFs were overviewed. Also, the approaches for enhancing the adsorption capacity and efficacy of MOFs were discussed. Moreover, the utilization of MOFs to improve the separation efficacy of mixed matrix membranes (MMMs) is also discussed. Furthermore, as the conversion of CO2 to fuels and other useful products is a viable next step to CO2 capture, therefore, recent progress in the utilization of MOFs as catalysts for CO2 conversion was also briefly discussed. Present work attempts to link the chemistry of MOFs to process economics for post-combustion CO2 capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.