Abstract

Understanding the interactions between single metallic atom/clusters (SMACs) has been taken to an unprecedented level, due to the delicate conditions required to produce exotic phenomena in electrode materials, such as thermocatalysis, electrocatalysis, and energy storage devices. Recently, state-of-the-art synthesis methods, such as one-step pyrolysis and multistep pyrolysis, have been developed for SMACs. Herein the interactions between SMACs such as synergetic, charge redistribution effects, and mutual assistance effects, are studied. SMACs have the advantage of maximum utilization of atoms and scattered active sites compared to single metal atoms, and they also have flexible and tunable atom clusters. SMACs have been widely developed and have shown excellent catalytic performance in electrocatalysis. Herein, the self-interaction between SMACs and their catalytic mechanisms are systematically described. The challenges in current synthesis strategies, catalytic mechanisms, and industrial applications of SMACs are analyzed, and a possible synthesis method for SMACs is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call