Abstract

Huntingtin is a 3144 amino acid protein defined as a scaffold protein with many intracellular locations that suggest functions in these compartments. Expansion of the CAG DNA tract in the huntingtin first exon is the cause of Huntington’s disease. An important tool in understanding the biological functions of huntingtin is molecular imaging at the single-cell level by microscopy and nanoscopy. The evolution of these technologies has accelerated since the Nobel Prize in Chemistry was awarded in 2014 for super-resolution nanoscopy. We are in a new era of light imaging at the single-cell level, not just for protein location, but also for protein conformation and biochemical function. Large-scale microscopy-based screening is also being accelerated by a coincident development of machine-based learning that offers a framework for truly unbiased data acquisition and analysis at very large scales. This review will summarize the newest technologies in light, electron, and atomic force microscopy in the context of unique challenges with huntingtin cell biology and biochemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call