Abstract
Numerical experiments undertaken to investigate the longevity and behavior of dark-lane elliptical galaxies are described. This is dynamically the same problem as a disk galaxy in a massive halo. Spiral galaxies are disks from a dynamical point of view. A disk of particles embedded in a self-consistent galaxy provides the basic model used for the experiments. This model is applicable to ordinary disk galaxies if the disk is interpreted as the visible galaxy and the “galaxy” is interpreted as the massive halo thought to be present around disk galaxies. Fully three-dimensional fully self-consistent n-body computer programs that can handle 100,000 particles are used for the experiments. The background galaxy is oblate, and the disk is inclined to the axis of the oblate galaxy, so the disk precesses differentially to produce a warp. A surprising result is that the galaxy center shifted, leaving the disk center orbiting around the galaxy center. This produces interesting phenomena reminiscent of observations in the region of the Galactic center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.