Abstract

The roots of most terrestrial plants are colonized by mycorrhizal fungi. They play a key role in terrestrial environments influencing soil structure and ecosystem functionality. Around them a peculiar region, the mycorrhizosphere, develops. This is a very dynamic environment where plants, soil and microorganisms interact. Interest in this fascinating environment has increased over the years. For a long period the knowledge of the microbial populations in the rhizosphere has been limited, because they have always been studied by traditional culture-based techniques. These methods, which only allow the study of cultured microorganisms, do not allow the characterization of most organisms existing in nature. The introduction in the last few years of methodologies that are independent of culture techniques has bypassed this limitation. This together with the development of high-throughput molecular tools has given new insights into the biology, evolution, and biodiversity of mycorrhizal associations, as well as, the molecular dialog between plants and fungi. The genomes of many mycorrhizal fungal species have been sequenced so far allowing to better understanding the lifestyle of these fungi, their sexual reproduction modalities and metabolic functions. The possibility to detect the mycelium and the mycorrhizae of heterothallic fungi has also allowed to follow the spatial and temporal distributional patterns of strains of different mating types. On the other hand, the availability of the genome sequencing from several mycorrhizal fungi with a different lifestyle, or belonging to different groups, allowed to verify the common feature of the mycorrhizal symbiosis as well as the differences on how different mycorrhizal species interact and dialog with the plant. Here, we will consider the aspects described before, mainly focusing on ectomycorrhizal fungi and their interactions with plants and other soil microorganisms.

Highlights

  • The roots of most terrestrial plants are colonized by mycorrhizal fungi

  • Aspects of Ectomycorrhizal Fungi and Their Interactions, ectomycorrhizae are established by the mycelia of fungi almost exclusively belonging to the so called “higher fungi,” i.e., Basidiomycetes and Ascomycetes, whose ecological strategies have been revisited by Tedersoo and Smith (2013)

  • This study demonstrates that the ECM fungus may affect both potential enzymatic activities and δ15N patterns of ECM tips in relation to phylogeny and exploration type

Read more

Summary

INTRODUCTION

The roots of most terrestrial plants are colonized by mycorrhizal fungi. They play a key role in terrestrial environments providing to plants an improvement in mineral nutrient uptake and earning in return carbon compounds (Brundrett, 2009). According to Iotti et al (2012) the competition between strains of different mating types seems related to a self-/non-self-recognition system acting before hyphal contact rather than to the presence of a heterokaryon incompatibility (HI) system which leads to the death of the heterokaryotic cells in incompatible reactions In support of this fact, Rubini et al (2014) reports that orthologs of the genes controlling HI in other filamentous ascomycetes are present in the T. melanosporum genome, but they lack the key functional domains involved in the HI process. The information derived from the several mycorrhizal genomes sequencing and the transcriptomics data on different ECM symbioses allowed the identification of novel fungal cell wall components with a putative role in the interaction with the host plant. Many studies suggest a role for the proteins regulated in symbiosis, functional analyses with the aim to highlight the function of these proteins are still lacking, as well as the nature of the cell wall remodeling during the ectomycorrhiza establishment and development

CONCLUSION AND PERSPECTIVES
Findings
AUTHOR CONTRIBUTIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call