Abstract

Climate change has emerged as a crucial global issue that significantly threatens the survival of plants. In particular, low temperature (LT) is one of the critical environmental factors that influence plant morphological, physiological, and biochemical changes during both the vegetative and reproductive growth stages. LT, including abrupt drops in temperature, as well as winter conditions, can cause detrimental effects on the growth and development of tomato plants, ranging from sowing, transplanting, truss appearance, flowering, fertilization, flowering, fruit ripening, and yields. Therefore, it is imperative to understand the comprehensive mechanisms underlying the adaptation and acclimation of tomato plants to LT, from the morphological changes to the molecular levels. In this review, we discuss the previous and current knowledge of morphological, physiological, and biochemical changes, which contain vegetative and reproductive parameters involving the leaf length (LL), plant height (PH) stem diameter (SD), fruit set (FS), fruit ripening (FS), and fruit yield (FY), as well as photosynthetic parameters, cell membrane stability, osmolytes, and ROS homeostasis via antioxidants scavenging systems during LT stress in tomato plants. Moreover, we highlight recent advances in the understanding of molecular mechanisms, including LT perception, signaling transduction, gene regulation, and fruit ripening and epigenetic regulation. The comprehensive understanding of LT response provides a solid basis to develop the LT-resistant varieties for sustainable tomato production under the ever-changing temperature fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.