Abstract

To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call