Abstract
Observations from the gamma-ray spectrometer instrument suite on the Mars Odyssey spacecraft have been interpreted as indicating the presence of vast reservoirs of near-surface ice in high latitudes of both martian hemispheres. Ice concentrations are estimated to range from 70 per cent at 60 degrees latitude to 100 per cent near the poles, possibly overlain by a few centimetres of ice-free material in most places. This result is supported by morphological evidence of metres-thick layered deposits that are rich in water-ice and periglacial-like features found only at high latitudes. Diffusive exchange of water between the pore space of the regolith and the atmosphere has been proposed to explain this distribution, but such a degree of concentration is difficult to accommodate with such processes. Alternatively, there are suggestions that ice-rich deposits form by transport of ice from polar reservoirs and direct redeposition in high latitudes during periods of higher obliquity, but these results have been difficult to reproduce with other models. Here we propose instead that, during periods of low obliquity (less than 25 degrees), high-latitude ice deposits form in both hemispheres by direct deposition of ice, as a result of sublimation from an equatorial ice reservoir that formed earlier, during a prolonged high-obliquity excursion. Using the ice accumulation rates estimated from global climate model simulations we show that, over the past ten million years, large variations of Mars' obliquity have allowed the formation of such metres-thick, sedimentary layered deposits in high latitude and polar regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.