Abstract

Calculations involving the transport of energetic heavy ions have recently received more attention from projects such as the Rare Isotope Accelerator (RIA) and from areas such as space radiation shielding. In these areas, the transport and reactions must be calculated for heavy ions such as 56Fe or 238U traveling at energies of ⩾1 GeV/nucleon. To serve these needs, recent upgrades to the particle transport code MCNPX have expanded the previously useful ion transport capability from a small suite of light ions (deuterons, tritons, 3He, and alpha particles) to a nearly complete list of those heavy and light ions that span the Table of Isotopes. To enable nuclear spallation from energetic collisions of these ions and targets, the LAQGSM physics model has been integrated into the MCNPX code. This physics model supplements the existing physics models already contained in the code, only one of which, ISABEL, could handle heavy-ion collisions (and then only over a limited range of masses and energies). The implementation of these new features now greatly expands the usefulness of MCNPX in energetic ion transport. The heavy-ion transport feature also allows the transport of residuals from all nuclear reactions that occur in the physics model regime, even when initiated by non-heavy ions. The implementation and use of heavy ions in MCNPX is explained. Also, computations with MCNPX are compared with benchmark experiments to show agreement with results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call