Abstract

Yersinia pestis, the causative agent of plague, has been responsible for at least three pandemics. During the last pandemic, which started in Hong Kong in 1894, the microorganism colonized new, previously unscathed geographical areas where it has become well established. The aim of this longitudinal study was to investigate the genetic stability of Y. pestis strains introduced into a new environment just under a century ago and to follow the epidemiology of any new genetic variant detected. In the present study, 187 strains of Y. pestis isolated between 1939 and 1996 from different regions of Madagascar and responsible mainly for human cases of bubonic and pneumonic plague were studied. Our principal genotyping method was rRNA gene profiling (ribotyping), which has previously been shown to be an effective scheme for typing Y. pestis strains of different geographical origins. We report that all studied Y. pestis strains isolated in Madagascar before 1982 were of classical ribotype B, the ribotype attributed to the Y. pestis clone that spread around the world during the third pandemic. In 1982, 1983, and 1994, strains with new ribotypes, designated R, Q, and T, respectively, were isolated on the high-plateau region of the island. Analysis of other genotypic traits such as the NotI genomic restriction profiles and the EcoRV plasmid restriction profiles revealed that the new variants could also be distinguished by specific genomic and/or plasmid profiles. A follow-up of these new variants indicated that strains of ribotypes Q and R have become well established in their ecosystem and have a tendency to spread to new geographical areas and supplant the original classical strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call