Abstract

Abstract The genetic engineering of Escherichia coli for the over-expression of enzymes of the aerobic and anaerobic pathways to cobalamin has resulted in the in vivo and in vitro biosynthesis of new intermediates and other products that were isolated and characterized using a combination of bioorganic chemistry and high-resolution NMR. Analyses of these products were used to deduct the functions of the enzymes that catalyze their synthesis. CobZ, another enzyme for the synthesis of precorrin-3B of the aerobic pathway, has recently been described, as has been BluB, the enzyme responsible for the oxygen-dependent biosynthesis of dimethylbenzimidazole. In the anaerobic pathway, functions have recently been experimentally confirmed for or assigned to the CbiMNOQ cobalt transport complex, CbiA (a,c side chain amidation), CbiD (C-1 methylation), CbiF (C-11 methylation), CbiG (lactone opening, deacylation), CbiP (b,d,e,g side chain amidation), and CbiT (C-15 methylation, C-12 side chain decarboxylation). The dephosphorylation of adenosylcobalamin-phosphate, catalyzed by CobC, has been proposed as the final step in the biosynthesis of adenosylcobalamin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.