Abstract
Matrix stability has been intensively investigated in the past two centuries. We review work that has been done in this topic, focusing on the great progress that has been achieved in the last decade or two. We start with classical stability criteria of Lyapunov, Routh and Hurwitz, and Liénard and Chipart. We then study recently proven sufficient conditions for stability, with particular emphasis on P-matrices. We investigate conditions for the existence of a stable scaling for a given matrix. We review results on other types of matrix stability, such as D-stability, additive D-stability, and Lyapunov diagonal stability. We discuss the weak principal submatrix rank property, shared by Lyapunov diagonally semistable matrices. We also discuss the uniqueness of Lyapunov scaling factors, maximal Lyapunov scaling factors, cones of real positive semidefinite matrices and their applications to matrix stability, and inertia preserving matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.