Abstract

Recent developments on the preparation and application of ZnO films for acoustic wave-based microfluidics and biosensors are reviewed in this paper. High quality and strongly textured ZnO thin films can be prepared using many technologies, among which RF magnetron sputtering is most commonly used. This paper reviews the deposition of ZnO film and summarizes the factors influencing the microstructure, texture and piezoelectric properties of deposited ZnO films. ZnO acoustic wave devices can be successfully used as biosensors, based on the biomolecule recognition using highly sensitive shear horizontal and Love-wave surface acoustic waves, as well as film bulk acoustic resonator devices. The acoustic wave generated on the ZnO acoustic devices can induce significant acoustic streaming, small scale fluid mixing, pumping, ejection and atomization, depending on the wave mode, amplitude and surface condition. The potential to fabricate an integrated lab-on-a-chip diagnostic system based on these ZnO acoustic wave technologies is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.