Abstract

Abstract Polymeric membranes have been widely considered as one of the next-generation technologies for CO2 capture from fossil fuel-derived flue gases. This separation modality requires novel polymeric materials that possess efficient CO2/N2 separation properties, as well as chemical and mechanical stability for a multiyear membrane lifetime. In this paper, recent developments in polymeric membranes tailored for post-combustion carbon capture are reviewed. The selected polymeric materials encompass ether oxygen-rich polymers, polynorbornenes, ionic liquid membranes, and facilitated transport membranes. In each of the selected materials, noteworthy research efforts for material design and membrane formation are highlighted. The performances of the selected materials are compared in the CO2/N2 selectivity-CO2 permeance plot. As the only class of materials reviewed herein that have demonstrated the fabrication of thin-film composite membranes in scale, facilitated transport membranes have shown both high selectivity and permeance at relevant conditions for post-combustion carbon capture. However, comprehensive field tests are needed to resolve the technical gap between the material development and the commercial application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call