Abstract
AbstractThe electronic structures of transition metal dichalcogenides (TMDs) has a strong dependency on the d‐band electrons of the central metal (M) atom. In particular, trigonal prismatic coordinated (2H) and octahedral coordinated (1T) phases with distinct crystal structure‐property relationships. Extraordinarily diverse electrical properties ranging from semiconducting, semimetallic to intrinsic metallic basically underlie from different Fermi level locations. Amid all TMDs, most specifically metallic VX2 possess plenty of interesting physical properties among them superconductivity, electrical conductivity, charge density wave, optical and magnetism etc. have offered intriguing applications in the fields of condensed matter physics, materials and device physics over the last few decades. Further modification of these materials by defect engineering, Li intercalation, electron beam/light irradiation, alloying and dimensional tuning can lead several tunable device applications. Due to their superior mechanical flexibility, controllable electrical properties, planar fabrication and high surface to volume ratio etc., 2D metallic TMDs materials emerge as active material for sensing, energy storage, conversion and field emission applications. This review article aims to provide the insights on the recent developments of different emerging properties, growth approaches and applications of 2D metallic VX2 (X = S, Se and Te) and its heterojunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.