Abstract

In this paper we review various improvements that we made in the development of multilayer mirror optics for home-lab x-ray analytical equipment in recent years. For the detection of light elements using x-ray fluorescence spectrometry, we developed a number of new multilayers with improved detection limits. In detail, we found that La/B4C multilayers improve the detection limit of boron by 29 % compared to the previous Mo/B 4 C multilayers. For the detection of carbon, TiO 2 /C multilayers improve the detection limit also by 29 % compared to the V/C multilayers previously used. For the detection of aluminum, WSi 2 /Si or Ta/Si multilayers can lead to detection limit improvements over the current W/Si multilayers of up to 60 % for samples on silicon wafers. For the use as beam-conditioning elements in x-ray diffractometry, curved optics coated with laterally d-spacing graded multilayers give rise to major improvements concerning usable x-ray intensity and beam quality. Recent developments lead to a high quality of these multilayer optics concerning beam intensity, divergence, beam uniformity and spectral purity. For example, x-ray reflectometry instruments equipped with such multilayer optics have dynamic ranges previously only available at synchrotron sources. Two-dimensional focusing multilayer optics are shown to become essential optical elements in protein crystallography and structural proteomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.