Abstract

Warm inflation, its different particle physics model implementations, and the implications of dissipative particle production for its cosmology are reviewed. First, we briefly present the background dynamics of warm inflation and contrast it with the cold inflation picture. An exposition of the space of parameters for different well-motivated potentials, which are ruled out, or severely constrained in the cold inflation scenario, but not necessarily in warm inflation, is provided. Next, the quantum field theory aspects in realizing explicit microscopic models for warm inflation are given. This includes the derivation of dissipation coefficients relevant in warm inflation for different particle field theory models. The dynamics of cosmological perturbations in warm inflation are then described. The general expression for the curvature scalar power spectrum is shown. We then discuss in detail the relevant regimes of warm inflation, the weak and strong dissipative regimes. We also discuss the results predicted in these regimes of warm inflation and how they are confronted with the observational data. We explain how the dissipative dynamics in warm inflation can address several long-standing issues related to (post-) inflationary cosmology. This includes recent discussions concerning the so-called swampland criteria and how warm inflation can belong to the landscape of string theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.