Abstract

A Description of the Development of the Bristol Siddeley Pegasus and Plenum Chamber Burning for the BS.100 and an Outline of the Performance of a V/S.T.O.L Subsonic Strike Fighter Utilizing a Vectored Thrust Engine with PCB as Compared with a Composite Power Plant Fighter and a Vectored Thrust Type without PCB. The Bristol Siddeley Pegasus vectored‐thrust turbo‐Tan has now been in operation for six years, and during that time has been developed to a fully operational stan‐dard in the Hawker Siddeley Kestrel V/S.T.O.L. sub‐sonic strike fighter. Initial development of a second‐generation V/ S.T.O.L. strike fighter for supersonic flight necessitated thrust augmentation by combustion in the normally cold by‐pass flow. This gave rise to the design and development of a suitable combustion system, now known as ‘Plenum Chamber Burning’, or ‘PCB’. This paper summarizes the satisfactory development of the Pegasus vectored‐thrust turbofan, gives some description of the PCB system development, and shows how the application of this system to a V/S.T.O.L. subsonic strike fighter vectored‐thrust power plant gives the latter considerable superiority when compared with an equivalent composite power plant configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call