Abstract

Following the discovery of frustrated magnetism in deformed pyrochlore lattice Cu2(OH)3Cl and Co2(OH)3Cl we have extensively investigated the material series in the chemical formula of M2(OH)3X, with M = Cu, Co, Ni, Fe, Mn, and X = Cl, Br, or I. In atacamite-structure Ni2(OH)3Cl, strong geometric frustration and an exotic antiferromagnetic transition below 5 K was found. While neutron diffraction witnessed unambiguously an antiferromagnetic long-range order, the μSR method can't ‘see’ this order, instead, the detected local field behaved quite like a dynamically fluctuating one. For the system of Co2(OH)3Cl, the magnetic state is very sensitive to both the anion and cation substitution. While Co2(OH)3Cl behaves like a zero-field kagomé ice ferromagnet, a completely substituted version of Co2(OH)3Br becomes antiferromagnetic although there is little difference in the crystal structure. The antiferromagnetic Co2(OH)3Br showed complicated magnetic transitions. Meanwhile, partially substituted Co2(OH)3Cl1-xBrx transforms from ferromagnetic to antiferromagnetic with increasing the x ratio. The results suggest that the interaction on the kagome-lattice plane is antiferromagnetic while that on the triangular lattice plane is ferromagnetic. For the substituted series (Co1-xFex)2(OH)3Cl a spin glass state is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call