Abstract

By presenting brief summaries of recent application highlights, an overview of NDE methods using SQUIDs is given. Bridge inspection with a SQUID array integrated with a yoke magnet excitation was shown by scanning along the pre-stressed steel of bridges and verified by opening the bridge deck. As the construction of the megaliner Airbus aircraft progresses, testing procedures for extremely thick-walled structures are needed. Defects at a depth of up to 40 mm were measured in a bolted three-layer aluminum sample with a total thickness of 62 mm. For the investigation of aircraft wheels, a remote eddy current (EC) excitation scheme yields better depth selectivity. Defects with an inside penetration of only 10% could be detected. SQUID magnetometers are well suited for pulsed EC techniques which cover a broader depth range than standard single frequency EC. An inversion procedure is presented providing a tomographic-like conductivity image of stacked aluminum samples. A recent SQUID application is nondestructive testing of niobium sheets used for superconducting cavities of particle accelerators. The detection of tantalum inclusions and other impurities which lower the cavity performance is based on the measurement of local current inhomogeneities caused by EC excitation or thermal gradients. Alternate techniques using SQUID sensors, such as modulated excitation arrays, rotating field schemes, sensor multiplexing, magnetic moment detection, and microscopy setups, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.