Abstract

Development of Pt-based oxygen reduction reaction catalysts with high efficiency and high durability is central to the application of proton-exchange membrane fuel cell systems. Pt–Co bimetallic catalysts have drawn extensive attention owing to their capability of delivering high performance and long lifetime for fuel cell applications including light-duty and heavy-duty vehicles. However, further improvements in durability and performance are needed to meet market requirements. To fully exploit the potential of Pt–Co catalysts, new insights into the relationship between catalyst properties and fuel cell performance and durability are needed, and more effective methods to tailor the features of Pt–Co catalysts need to be developed. This review provides a summary and perspective on recent efforts, including work on customizing the Pt shell and Pt:Co ratio, tailoring the crystal structure, and improving carbon support properties, with a particular emphasis on mechanisms leading to enhancement of mass activity, power density, and durability in membrane electrode assembly testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.