Abstract

To establish a sustainable material production system and preserve the Earth’s environment, “biomass plastics” that are made from renewable biomass instead of petroleum and “biodegradable plastics” that are completely degraded into carbon dioxide and water by enzymes secreted by microorganisms in the environment are desirable products. This miniature review describes a series of studies on microbial polyesters and polysaccharide ester derivatives, including the synthesis of novel polymers, development of new processing techniques for high-performance films and fibers, elucidation of the relationship between structure and properties using synchrotron radiation, and control of the rate of enzymatic degradation. To establish a sustainable material production system and preserve the Earth’s environment, “biomass plastics” that are made from renewable biomass instead of petroleum and “biodegradable plastics” that are completely degraded into carbon dioxide and water by enzymes secreted by microorganisms in the environment are desirable products. This miniature review describes a series of studies on microbial polyesters and polysaccharide ester derivatives, including the synthesis of novel polymers, development of new processing techniques for high-performance films and fibers, elucidation of the relationship between structure and properties using synchrotron radiation, and control of the rate of enzymatic degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call