Abstract
As a promising alternative to petroleum fossil energy, polymer electrolyte membrane fuel cell has drawn considerable attention due to its low pollution emission, high energy density, portability, and long operation times. Proton exchange membrane (PEM) like Nafion plays an essential role as the core of fuel cell. A good PEM must have satisfactory performance such as high proton conductivity, excellent mechanical strength, electrochemical stability, and suitable for making membrane electrode assemblies (MEA). However, performance degradation and high permeability remain the main shortcomings of Nafion. Therefore, the development of a new PEM with better performance in some special conditions is greatly desired. In this review, we aim to summarize the latest achievements in improving the Nafion performance that works well under elevated temperature or methanol-fueled systems. The methods described in this article can be divided into some categories, utilizing hydrophilic inorganic material, metal-organic frameworks, nanocomposites, and ionic liquids. In addition, the mechanism of proton conduction in Nafion membranes is discussed. These composite membranes exhibit some desirable characteristics, but the development is still at an early stage. In the future, revolutionary approaches are needed to accelerate the application of fuel cells and promote the renewal of energy structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.