Abstract

In this review the main advances in heavy-ion fusion research that have taken place over the last decade are addressed. During this period, experimental studies have been extended to deep subbarrier energies to reveal the unexpected phenomenon of fusion hindrance. The coupled-channels descriptions have been refined to include the effects of nucleon transfer and to account for the fusion hindrance in terms of the ion-ion potential in the strongly overlapping region. Substantial progress has been made in time-dependent Hartree-Fock theory to the point that this approach now can make parameter-free predictions of heavy-ion fusion excitation functions. As several heavy-ion fusion reactions are of crucial importance in late-stage giant-star evolution, these reactions continue to be studied with better experimental and theoretical tools in order to provide improved input to astrophysical models. The effects of loosely bound valence nucleons on the fusion cross sections are the focus of a number of experimental studies involving radioactive beams, which have only recently become available. And finally, as the active field of synthesizing superheavy elements relies on heavy-ion fusion to reach the nuclei of interest, it is important to understand the fusion dynamics that plays a crucial role in both the “cold-fusion” and “hot-fusion” approaches to the superheavy island of stability. Also this area has seen significant progress in several different approaches to the problem of predicting the cross sections for formation and survival of these rare nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call