Abstract

Digital light processing (DLP) 3D printing is rapidly advancing and has emerged as a powerful additive manufacturing approach to fabricate analytical microdevices. DLP 3D-printing utilizes a digital micromirror device to direct the projected light and photopolymerize a liquid resin, in a layer-by-layer approach. Advances in vat and lift design, projector technology, and resin composition, allow accurate fabrication of microchannel structures as small as 18 × 20 µm. This review describes the latest advances in DLP 3D-printing technology with respect to instrument set-up and resin formulation and highlights key efforts to fabricate microdevices targeting emerging (bio-)analytical chemistry applications, including colorimetric assays, extraction, and separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.