Abstract

The cyclin-dependent kinases (CDKs) have been intensely studied because of their involvement in regulating essential cellular activities that include proliferation and transcription. A series of CDK2-containing structures have informed a general model for the molecular details of CDK activation and regulation. Recent structural studies of other members of the CDK family have lead to a re-appraisal of this model. In this review, we describe alternative CDK-cyclin assemblies taking the recently characterised CDK/cyclin complexes, CDK9/cyclinT1 and CDK4/cyclinD as examples. The differential effects of CDK phosphorylation on CDK activation state and substrate specificity are examined in the light of recent data on CDK2/cyclinA, CDK9/cyclinT, CDK4/cyclinD and Pho85/Pho80. We also present an overview of factors that affect CDK substrate specificity, and, in particular, the contributions that are made by the cyclin subunit. Finally, we review recent results that have helped to unravel the molecular mechanisms underlying the conflicting roles of the Cip/Kip CDK inhibitor family in CDK regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call