Abstract

This review describes recent computational investigations into the electronic and geometric structures of molecular actinide compounds. Following brief introductions to (i) the effects of relativity in chemistry and (ii) ab initio and density functional quantum chemical methods, four areas of contemporary research are discussed. These are pi backbonding in uranium complexes, the geometric structures of bis benzene actinide compounds, the valence electronic structure of the uranyl ion, and the inverse trans influence in pseudo-octahedral [AnOX5]n-. Comparisons are made with experimental studies, and similarities and differences between d- and f-block chemistry are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.