Abstract
This article reviews recent advances in causal inference relevant to sociology. We focus on a selective subset of contributions aligning with four broad topics: causal effect identification and estimation in general, causal effect heterogeneity, causal effect mediation, and temporal and spatial interference. We describe how machine learning, as an estimation strategy, can be effectively combined with causal inference, which has been traditionally concerned with identification. The incorporation of machine learning in causal inference enables researchers to better address potential biases in estimating causal effects and uncover heterogeneous causal effects. Uncovering sources of effect heterogeneity is key for generalizing to populations beyond those under study. While sociology has long emphasized the importance of causal mechanisms, historical and life-cycle variation, and social contexts involving network interactions, recent conceptual and computational advances facilitate more principled estimation of causal effects under these settings. We encourage sociologists to incorporate these insights into their empirical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.