Abstract
Brittle fracture of polycrystalline graphite under tension, in-plane shear and torsion loading is studied experimentally and theoretically using prismatic and axisymmetric specimens weakened by sharp and rounded-tip V-notches. The main purpose is twofold. First, to provide a new set of experimental data from notched samples made of isostatic polycrystalline graphite with different values of notch opening angles and root radii, which should be useful to engineers engaged with static strength analysis of graphite components. At the best of authors' knowledge, data from notch specimens are very scarce in the literature for this material. Second, to apply a fracture criterion based on the strain energy density (SED) averaged over a well-defined control volume surrounding the notch tip, extending what was made by the present authors for in-plane tension-shear loading conditions in notched specimens made of other materials. Good agreement is found between the experimental data related to the critical loads to failure and the theoretical assessments based on the constancy of the mean SED over the material-dependent control volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.