Abstract

The compressible blade tip vortex of rotary wings has been the subject of numerous investigations and its importance for the understanding of the helicopter flow field has been clearly emphasised. Due to its great impact on the dynamics of the flow field, the investigation of the tip vortex is directly linked to issues of flow control and aeroacoustic optimisation. However, among velocity field data, additional core density information on the blade tip vortex is desirable with a view to vortex modelling. In this work we describe an airborne background oriented Schlieren system for full-scale helicopter flight tests as well as the first results of the tomographic reconstruction of the compressible vortex core. We report the measurements of both a 0.4 Mach-scaled rotor model of the MBB BO 105 and the corresponding full-scale helicopter in hover flight condition. The tomographic reconstruction of the data allows us to estimate the density and the radius for the viscous core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call