Abstract
Due to its highly developed pore structure and large specific surface area, activated carbon is often used as a catalyst or catalyst carrier in catalytic ozonation. Although the pore structure of activated carbon plays a significant role in the treatment of wastewater and the mass transfer of ozone molecules, the effect is complicated and unclear. Because different application scenarios require catalysts with different pore structures, catalysts with appropriate pore structure characteristics should be developed. In this review, we systematically summarized the current adjustment methods for the pore structure of activated carbon, including raw material, carbonization, activation, modification, and loading. Then, based on the brief introduction of the application of activated carbon in catalytic ozonation, the effects of pore structure on catalytic ozonation and mass transfer are reviewed. Furthermore, we proposed that the effect of pore structure is mainly to provide catalytic active sites, promote free radical generation, and reduce mass transfer resistance. Therefore, large external surface area and reasonable pore size distribution are conducive to catalytic ozonation and mass transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.