Abstract
AbstractThis review article explores the transformative advancements in wearable biosignal sensors powered by machine learning, focusing on four notable biosignals: electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), and photoplethysmogram (PPG). The integration of machine learning with these biosignals has led to remarkable breakthroughs in various medical monitoring and human–machine interface applications. For ECG, machine learning enables automated heartbeat classification and accurate disease detection, improving cardiac healthcare with early diagnosis and personalized interventions. EMG technology, combined with machine learning, facilitates real‐time prediction and classification of human motions, revolutionizing applications in sports medicine, rehabilitation, prosthetics, and virtual reality interfaces. EEG analysis powered by machine learning goes beyond traditional clinical applications, enabling brain activity understanding in psychology, neurology, and human–computer interaction, and holds promise in brain–computer interfaces. PPG, augmented with machine learning, has shown exceptional progress in diagnosing and monitoring cardiovascular and respiratory disorders, offering non‐invasive and accurate healthcare solutions. These integrated technologies, powered by machine learning, open new avenues for medical monitoring and human–machine interaction, shaping the future of healthcare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.