Abstract

Most patients with type 2 (non-insulin-dependent) diabetes mellitus require pharmacotherapy, initially as monotherapy and subsequently in combination, as adjuncts to diet and exercise. Exogenous insulin is ultimately required in a substantial proportion, reflecting the progressive natural history of the disease. Sulphonylureas and biguanides have been employed for over 4 decades as oral antidiabetic agents, but they have a limited capacity to provide long term glycaemic control and can cause serious adverse effects. Thus, more efficacious and tolerable antidiabetic agents are required. Recent years have witnessed the introduction of agents with novel modes of action, that is, the alpha-glucosidase inhibitors acarbose and miglitol (which reduce postprandial hyperglycaemia) and the first of the thiazolidinedione insulinsensitising drugs--troglitazone and rosiglitazone. Although the former has been withdrawn in some countries due to adverse effects, another 'glitazone' pioglitazone is expected to be approved in the near future. Other recently introduced drugs include glimepiride and the meglitinide insulin secretagogue, repaglinide. Attention is also focusing increasingly on combination therapy using insulin together with sulphonylureas, metformin or troglitazone. Rapid-acting insulin analogues are now being used as alternatives to conventional insulins; their role in the management of type 2 diabetes mellitus is presently uncertain but reports of a reduced frequency of hypoglycaemia are encouraging. The development of new drugs aims to counter the principal metabolic defects of the disorder, respectively, relative insulin deficiency and insulin resistance. Novel classes of rapid-acting secretagogues under evaluation include the morphilinoguanide BTS 67582 and the meglitinides mitiglinide (KAD 1229) and senaglinide (A-4166). Succinate ester derivatives represent a potential novel approach to improving beta-cell function through enhancement of insulin biosynthesis and secretion. Enhancement of nutrient-induced insulin secretion is a mechanism with several putative targets within the beta-cell; potentiators of insulin secretion include glucagon-like peptide-1 and its analogues, phosphodiesterase inhibitors and the imidazoline derivative PMS 812 (S 21663). The amylin agonist pramlintide slows gastric emptying and suppression of glucagon secretion. Non-thiazolidinedione insulin-sensitising agents include the gamma-receptor agonist G 1262570X (GG 570) and D-chiro-inositol. Insulin analogues with prolonged action and inhaled insulin preparations are also under investigation. Insulin-mimetic agents include organic vanadium compounds. Whether newer agents will offer clinically relevant efficacy and tolerability advantages over existing therapies remains to be determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.