Abstract

For ITER divertor Plasma Facing Components (PFCs), tens of thousands of armor/heat sink interfaces will be produced by the industry. Statistically, there is a probability that interfaces with defects be delivered. The defect detection with Non Destructive Techniques (NDT) is then a major challenge. NDT should provide a detectability threshold below the critical defect size. For a defect located all along the axial length of a component, the critical defect size at interface is about 50° for W monoblock (resp. 6mm for W flat tile). It is defined with thermo-mechanical fatigue behaviour under 10MWm−2 for W monoblock (resp. 5MWm−2 for W flat tile). The purpose of this paper is to study the armor/heat sink defect detection of tungsten components (flat tile and monoblock geometries) with SATIR test bed (Infrared thermography NDT). We demonstrate that SATIR is a relevant NDT to detect defect of W components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.