Abstract
The incidence of thyroid tumors has been increasing yearly over the past decade, making it the fourth highest tumor in women. This places various biological burdens on those affected. Currently, thyroid tumors are primarily diagnosed using percutaneous fine needle aspiration and ultrasound. However, these methods are complex, expensive, and less accurate, and they may fail to detect some thyroid nodules. As an alternative, researchers are focusing on blood-based biomarkers in addition to the traditional diagnostic methods, assisted predominantly by nanomaterials. Early identification of thyroid cancer is crucial as it is highly treatable. Various sensing systems have been developed using nanomaterial-mediated approaches to enhance the detection system. Nanomaterials are effectively applied in biosensors for surface functionalization and are conjugated with biomolecules to improve the interaction with the target analyte. This review discusses nanomaterial-assisted thyroid tumor detection, with a special focus on nanomaterial-based biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.