Abstract

In this paper, we present a short account of some recent developments of self-interaction-free density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) for accurate and efficient treatment of the electronic structure, and time-dependent quantum dynamics of many-electron atomic and molecular systems. The conventional DFT calculations using approximate and explicit exchange-correlation energy functional contain spurious self-interaction energy and improper long-range asymptotic potential, preventing reliable treatment of the excited, resonance, and continuum states. We survey some recent developments of DFT/TDDFT with optimized effective potential (OEP) and self-interaction correction (SIC) for both atomic and molecular systems for overcoming some of the above mentioned difficulties. These DFT (TDDFT)/OEP-SIC approaches allow the use of orbital-independent single-particle local potential which is self-interaction free. In addition we discuss several numerical techniques recently developed for efficient and high-precision treatment of the self-interaction-free DFT/TDDFT equations. The usefulness of these procedures is illustrated by a few case studies of atomic, molecular, and condensed matter processes of current interests, including (a) autoionizing resonances, (b) relativistic OEP-SIC treatment of atomic structure (Z=2-106), (c) shell-filling electronic structure in quantum dots, (d) atomic and molecular processes in intense laser fields, including multiphoton ionization, and very-high-order harmonic generation, etc. For the time-dependent processes, an alternative Floquet formulation of TDDFT is introduced for time-independent treatment of multiphoton processes in intense periodic or quasiperiodic fields. We conclude this paper with some open questions and perspectives of TDDFT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call