Abstract

The acidic characteristic of the tumor site is one of the most well-known features and provides a series of opportunities for cancer-specific theranostic strategies. In this regard, pH-responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI-guided theranostic nanoplatforms for tumor-specific treatments.Therefore, various MRI-based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH-responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH-responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH-responsiveness for cancer diagnosis and therapy are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.