Abstract

Photodynamic therapy (PDT) is an attractive method for cancer treatment. Triplet photosensitizers (PSs) are critical for this method; upon photoexcitation, efficient intersystem crossing (ISC) occurs for triplet PSs, the triplet-excited state of the triplet PSs is populated, then via intermolecular triplet energy transfer, the O2, in triplet-spin multiplicity at ground state, is sensitized to the singlet-excited state, i.e., singlet oxygen (1O2) is produced. This strong reactive oxygen species (ROS) will oxidize the biomolecules in the tumor tissue. Thus, the design of novel triplet PSs as efficient PDT agents is vital. In this review article, we will introduce the recent development of the heavy atom-free triplet PSs used for PDT, including those based on spin-orbit charge transfer ISC (SOCT-ISC), twisting of the π-conjugation framework-induced ISC, radical enhanced ISC, and thionated carbonyl-induced ISC. The ISC mechanisms and molecular structure design rationales are discussed. The less studied electron spin selectivity of the ISC of the triplet PSs is also introduced. This information is helpful for the future design of new efficient triplet PSs for PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call