Abstract

Volatile organic compounds (VOCs) emitted from anthropogenic sources pose direct and indirect hazards to both atmospheric environment and human health due to their contribution to the formation of photochemical smog and potential toxicity including carcinogenicity. Therefore, to abate VOCs emission, the catalytic oxidation process has been extensively studied in laboratories and widely applied in various industries. This report is mainly focused on the benzene, toluene, ethylbenzene, and xylene (BTEX) with additional discussion about chlorinated VOCs. This review covers the recent developments in catalytic combustion of VOCs over noble metal catalysts, nonnoble metal catalysts, perovskite catalysts, spinel catalysts, and dual functional adsorbent-catalysts. In addition, the effects of supports, coke formation, and water effects have also been discussed. To develop efficient and cost-effective catalysts for VOCs removal, further research in catalytic oxidation might need to be carried out to strengthen the understanding of catalytic mechanisms involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.